
ZIO Java API
Tutorial

1.2, Feb 2012

ZIO Java API Tutorial Rev. 1.2

This work is licensed under the Creative Commons Attribution-Share Alike 2.5 India License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/2.5/in/ or send a letter
to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

ZIO Java API Tutorial Rev. 1.2

Zilogic Systems Page iii

Table of Contents
1. Introduction ... 1
2. API Examples ... 2

1. Controlling LEDs ... 2
2. Interfacing Switches ... 3
3. Interfacing I²C Devices ... 3
4. Interfacing a Potentiometer ... 5
5. Controlling LED Brightness ... 6
6. Interfacing SPI Devices ... 7

ZIO Java API Tutorial Rev. 1.2

Zilogic Systems Page 1

Chapter 1. Introduction
ZIO is a IO framework for rapid product development. And as such it comes along with an API that
can be used to access the IO interfaces provided by the board. This document shows how to use the
API, to do simple tasks, which can then be used as a reference for building complex applications.

The ZIO motherboard has 6 modules: GPIO , I2C , ADC , DAC , PWM and SPI . Each module is in
charge of a set of signals associated with the module. The modules and their associated signals is
shown in the following diagram.

Figure 1.1. ZIO Modules and Signals

These modules on the motherboard are accessed through an agent software running on the
motherboard. The API communicates with the agent and performs actions on the modules. Each
module is handled by a separate object class in the API. The modules and their corresponding
classes are described in detail in the following sections.

ZIO Java API Tutorial Rev. 1.2

Zilogic Systems Page 2

Chapter 2. API Examples
1. Controlling LEDs

LEDs can be easily connected to GPIO output pins as shown in the following circuit. When the GPIO
output pin is set to high, the LED turns on and when the pin is set to low, the LED turns off. The
code to blink the LED is listed below.

Figure 2.1. LED Circuit

LED Blink, Java Code.

import com.zilogic.zio.*; ❶

class LED {
 public static void main(String args[])
 throws ProtocolException, InterruptedException {

 Agent agent = new Agent("/dev/ttyUSB0"); ❷

 GPIO gpio = new GPIO(agent); ❸

 int ledPin = 12; ❹

 while (true) {
 gpio.writePin(ledPin, 1); ❺

 Thread.sleep(1000);

 gpio.writePin(ledPin, 0); ❻

 Thread.sleep(1000);
 }
 }
}

❶ The ZIO API resides in a Java package called com.zilogic.zio . To use the API the package
has to be imported.

❷ The Agent class is used to establish a communication link between the host and the board.
The device file that corresponds to the USB serial port of the ZIO board is passed as argument.
Under Linux, it is usually /dev/ttyUSBx or /dev/ttyACMx . Under Windows, it is COMx .

❸ The GPIO class is used to control the GPIO module. The Agent object is passed as argument
to the constructor.

❹ The GPIO output pin to which the LED is connected.
❺❻ The pin state can be controlled using the writePin method of the GPIO class. The first

argument is the pin to control. The second argument is the value to be set on the pin.

ZIO Java API Tutorial Rev. 1.2

Zilogic Systems Page 3

2. Interfacing Switches

Switches can be connected to GPIO output pins as shown in the following circuit. When the switch is
not pressed, the input pin is internally pulled up to 5V, and reads high. When the switch is pressed,
the input pin is grounded, and reads low. The code to read the switch status is listed below.

Switch Status, Java Code.

import com.zilogic.zio.*;

class Switch {
 public static void main(String args[])
 throws ProtocolException, InterruptedException {

 Agent agent = new Agent("/dev/ttyUSB0");
 GPIO gpio = new GPIO(agent);
 int switchPin = 0; ❶

 while (true) {
 int state;

 state = gpio.readPin(switchPin); ❷

 if (state == 1) {
 System.out.println("Switch Off");
 } else {
 System.out.println("Switch On");
 }

 Thread.sleep(500);
 }
 }
}

❶ The GPIO input pin to which the switch is connected.
❷ The readPin method of the GPIO class can be used to read the pin state. The pin no. is

passed as argument. The method returns the state of the pin.

3. Interfacing I²C Devices

I²C is a bi-directional two-wire (data and clock) serial bus that provides a communication link
between integrated circuits. Examples of simple I²C-compatible devices found in embedded
systems include EEPROMs, thermal sensors, and real-time clocks.

ZIO Java API Tutorial Rev. 1.2

Zilogic Systems Page 4

I²C IO Expander (PCF8574) provides 8 digitial IO lines that can be controlled, through the I²C bus.
The IO Expander can be interfaced to the I²C module as show in the following circuit. The code to
access the I²C IO Expander is listed below.

Figure 2.2. I²C IO Expander Circuit

I²C IO Expander, Java Code.

import com.zilogic.zio.*; ❶

class I2CExpander {
 public static void main(String args[])
 throws ProtocolException, InterruptedException {

 Agent agent = new Agent("/dev/ttyUSB0");
 I2C i2c = new I2C(agent); ❷

 int dev = 0x20; ❸

 int[] wdata = new int[] { 0xFF };
 int[] rdata;

 i2c.config(100); ❹

 try {
 i2c.write(dev, wdata); ❺

 rdata = i2c.read(dev, 1); ❻

 } catch (I2CNoAckException e) {
 System.out.println(e);
 agent.close();
 return;
 }

 String msg = String.format("IO Expander Input: 0x%02X", rdata[0]);
 System.out.println(msg);
 agent.close();
 }
}

❶❷ The I2C class is used to control I²C module. The Agent object is passed as argument to the
constructor.

❸ The 7-bit device address of the I²C device can be obtained from the data sheet, and the
hardware configuration of the pins A0 , A1 and A2 . In this case it happens to be 0x20 .

❹ The config method of the I2C class is used to configure the bus clock frequency. The
frequency is specified in kHz.

ZIO Java API Tutorial Rev. 1.2

Zilogic Systems Page 5

❺ The write method of the I2C class is used to write bytes to the I²C device. The device address
is specified as the first argument. The array of bytes to be written is specified as the second
argument.

❻ The read method of the I2C class is used to read bytes from the I²C device. Th device
address is specified as the first argument. The no. of bytes to be read is specified as the second
argument. The method returns an array of bytes read from the device.

4. Interfacing a Potentiometer
A single turn potentiometer in a variable resistor connection can be used in volume control
applications. The potentiometer is interfaced to the ADC module as shown in the following circuit.
The potentiometer is connected in voltage divider configuation. The voltage drop across the bottom
half of the voltage divider is measured by the ADC. The code to read the voltage from the ADC
input is given below.

Figure 2.3. Potentiometer Circuit

Potentiometer, Java Code.

import com.zilogic.zio.*; ❶

class Pot {
 public static void main(String args[])
 throws ProtocolException, InterruptedException {

 Agent agent = new Agent("/dev/ttyUSB0");
 ADC adc = new ADC(agent); ❷

 int potPin = 0; ❸

 while (true) {
 double value = adc.readPin(potPin); ❹

 String msg = String.format("ADC Value: %1.2f", value);
 System.out.println(msg);

 Thread.sleep(500);
 }
 }
}

❶❷ The ADC class is used to control ADC module. As with other module objects, the Agent object
is passed as argument to the constructor.

❸ The ADC input pin to which the pot. is connected.
❹ The readPin method of the ADC class can be used to get the voltage at the pin. The pin no.

is passed as argument to the method. The function returns the voltage on the pin as a floating

ZIO Java API Tutorial Rev. 1.2

Zilogic Systems Page 6

point value. In case the raw ADC value is required, readPinRaw method can be used. The
method returns a value between 0x0000 and 0xFFFF .

Note: Even though the ADC is 10-bit, the value is oversampled to 16-bits, to make the interface
future proof.

5. Controlling LED Brightness

The brightness of an LED can be controlled by driving the LED using a PWM signal. PWM is a digital
control technique wherein the processor adjusts the duty cycle of a sequence of fixed-width pulses.
The LED can be interfaced to the PWM module as shown in the following circuit. When the duty
cycle increases, the ON period of the PWM signal increases and the LED brightness increases. The
code to control the LED brightness is given below.

Figure 2.4. LED Brightness Circuit

LED Brightness Control, Java Code.

import com.zilogic.zio.*;

class Brightness {
 public static void main(String args[])
 throws ProtocolException, InterruptedException {

 Agent agent = new Agent("/dev/ttyUSB0");
 PWM pwm = new PWM(agent); ❶

 int ledPin = 0x1; ❷

 pwm.setFreq(ledPin, 2); ❸

 pwm.setDuty(ledPin, 0); ❹

 pwm.start(ledPin); ❺

 while (true) {
 for (int i = 0; i < 100; i += 3) {
 pwm.setDuty(ledPin, i);
 Thread.sleep(10);
 }
 }
 }
}

❶ The PWM class is used to control the PWM module. As with other module objects, the Agent
object is passed as argument to the constructor.

❷ The PWM output pin to which the LED is connected. The PWM API accepts a list of pins, so that
the PWM parameters of multiple pins can be set simultaneously.

ZIO Java API Tutorial Rev. 1.2

Zilogic Systems Page 7

❸ The PWM freq is set using the setFreq method of the PWM class. The list of pins is passed
as the first argument. The frequency in kHz is passed as the second argument.

❹ The PWM duty is set using the setDuty method of the PWM class. The list of pins is passed
as the first argument. The duty cycle in percentage is passed as the second argument.

❺ The PWM signal generation is started using the start method. And can be stopped using
the stop method.

6. Interfacing SPI Devices

Serial Peripheral Interface (SPI) is an inexpensive chip interconnection bus, popular on circuit
boards. SPI devices like the SPI EEPROM (93C46) can be interfaced to the SPI port as show in the
following circuit. The code to access the SPI EEPROM is given below.

Figure 2.5. SPI EEPROM Circuit

SPI EEPROM, Java Code.

import com.zilogic.zio.*; ❶

class EEPROM {
 public static void main(String args[])
 throws ProtocolException, InterruptedException {

 Agent agent = new Agent("/dev/ttyUSB0");
 SPI spi = new SPI(agent); ❷

 GPIO gpio = new GPIO(agent); ❸

 int ssPin = 20;

 spi.config(100,
 SPI.CPOL_IDLE_LOW,
 SPI.CPHASE_LEAD_EDGE,
 SPI.ENDIAN_MSB_FIRST); ❹

 int[] wdata;
 int[] rdata;
 int addr = 0x2;

 gpio.writePin(ssPin, 1); ❺

 try {
 wdata = new int[] { 0x03, addr, 0x00, 0x00 };
 rdata = spi.writeRead(wdata); ❻

ZIO Java API Tutorial Rev. 1.2

Zilogic Systems Page 8

 } finally {
 gpio.writePin(ssPin, 0); ❼

 }

 String msg = String.format("EEPROM has 0x%02X%02X at address 0x%04X",
 rdata[2], rdata[3], addr);
 System.out.println(msg);
 agent.close();
 }
}

❶❷ The SPI class is used to control SPI module. The Agent object is passed as argument to the
constructor.

❸ The GPIO class is used for controlling the slave select pin. The slave select pin available on
the SPI header is GPIO pin no. 20.

❹ The config method of the SPI class is used to configure the bus clock frequency, the clock
polarity, the clock phase, and the data endianess.

❺❼ The slave select signal is made high while accessing the chip, using the GPIO writePin
method.

❻ The writeRead method of the SPI class is used to write / read bytes to / from the slave.
The bytes to be written is specified as argument. An equal no. of bytes is returned as a list.
Here a 16-bit value is read from address 0x2 .

